(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
plus(0, x) → x
plus(s(x), y) → s(plus(p(s(x)), y))
times(0, y) → 0
times(s(x), y) → plus(y, times(p(s(x)), y))
exp(x, 0) → s(0)
exp(x, s(y)) → times(x, exp(x, y))
p(s(0)) → 0
p(s(s(x))) → s(p(s(x)))
tower(x, y) → towerIter(x, y, s(0))
towerIter(0, y, z) → z
towerIter(s(x), y, z) → towerIter(p(s(x)), y, exp(y, z))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(2n):
The rewrite sequence
exp(s(x29228_1), s(y)) →+ plus(exp(s(x29228_1), y), times(p(s(x29228_1)), exp(s(x29228_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
The rewrite sequence
exp(s(x29228_1), s(y)) →+ plus(exp(s(x29228_1), y), times(p(s(x29228_1)), exp(s(x29228_1), y)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [y / s(y)].
The result substitution is [ ].
(2) BOUNDS(2^n, INF)